Materi Bentuk Pangkat dan Akar Kelas 9 Lengkap, [ diktrus matematika ]

Materi Bentuk Pangkat dan Akar Kelas 9 Lengkap, [ diktrus matematika ] - Hallo sobat blogger Pendidikan, Posting yang saya unggah pada kali ini dengan judul Materi Bentuk Pangkat dan Akar Kelas 9 Lengkap, [ diktrus matematika ] , Artikel ini bertujuan untuk memudahkan kalian mencari apa yang kalian inginkan, kami telah mempersiapkan artikel ini dengan baik untuk kalian baca dan ambil informasi didalamnya. mudah-mudahan isi postingan Artikel Formula Matematika, Artikel Matematika, Artikel Modul Matematika, Artikel Teori, yang kami tulis ini dapat kalian pahami dengan baik, semoga artikel ini berguna untuk kalian, jika ada kesalahan penulisan yang dilakukan oleh penulis mohon dimaafkan karena penulis masih newbie. baiklah, selamat membaca.

Judul : Materi Bentuk Pangkat dan Akar Kelas 9 Lengkap, [ diktrus matematika ]
link : Materi Bentuk Pangkat dan Akar Kelas 9 Lengkap, [ diktrus matematika ]

Baca juga


Materi Bentuk Pangkat dan Akar Kelas 9 Lengkap, [ diktrus matematika ]

Bilangan Bulat dengan Eksponen Bilangan Bulat Positif


Masih ingat bentuk berikut :
32 = 3 x 3
23 = 2 x 2 x 2
56 = 5 x 5 x 5 x 5 x 5 x 5 
Demikian seterusnya sehingga diperoleh bentuk umum sebagai berikut. 
Gambar:36.jpg 
Dengan a bilangan bulat dan n bilangan bulat positif Dari pengertian di atas akan diperoleh sifat-sifat berikut.

Sifat 1
an x an = am + n 
24 x 23 = (2 x 2 x 2 x 2 )x(2 x 2 x 2 )
           = 2 x 2 x 2 x 2 x 2 x 2 x 2
           = 27
           = 24+3 
Sifat 2
am : an = am - n, m > n
55 : 53 = (5 x 5 x 5 x 5 x 5) : (5 x 5 x 5)
           = 5 x 5
           = 52
           = 55 - 3 
Sifat 3
(am)n = am x n
(34)2 = 34 x 34
       = (3 x 3 x 3 x 3) x (3 x 3 x 3 x 3)
       = (3 x 3 x 3 x 3 x 3 x 3 x 3 x 3)
       = 38
       = 34 x 2

Sifat 4
(a x b)m = am x bm
(4 x 2)3 = (4 x 2) x (4 x 2) x (4 x 2)
           = (4 x 4 x 4) x (2 x 2 x 2)
           = 43 x 23 
Sifat 5
(a : b)m = am : bm
(6 : 3) 4 = (6 : 3) x (6 : 3) x (6 : 3) x (6 : 3)
            = (6 x 6 x 6 x 6) : (3 x 3 x 3 x 3)
            = 64 : 34

Bilangan Bulat dengan Eksponen Bilangan Bulat Negatif

Gambar:37.jpg 
Dari pola bilangan itu dapat disimpulkan bahwa 20 = 1 dan 2-n 1/2n , secara umum dapat ditulis :

Gambar:38.jpg 
Pecahan Berpangkat Bilangan Bulat
Kita telah mengetahui bahwa pecahan adalah bilangan dalam bentuk dengun a dan b bilangan bulat (b ? 0). Bagaimanakah jika pecahan dipangkatkan dengan bilangan bulat? Untuk menentukan hasil pecahan yang dipangkatkan dengan bilangan bulat, caranya sama dengan menentukan hasil bilangan bulat yang dipangkatkan dengan bilangan bulat. 
Contoh:
Tentukan hasil berikut ini! 
 (1/2)5
Jawab :
Gambar:39.jpg 

Bentuk Akar dan Bilangan Berpangkat Pecahan


Bilangan Rasional dan Irasional

Bilangan rasional adalah bilangan yang dapat dinyatakan dalam bentuk a/b dengan a, b bilangan bulat dan b ? 0. Bilangan rasional merupakan gabungan dari bilangan bulat, nol, dan pecahan. Contoh bilangan rasional adalah -5, -1/2, 0, 3, 3/4, dan 5/9.

Sebaliknya, bilangan irasional adalah bilangan yang tidak dapat dinyatakan dalam bentuka/b dengan a, b bilangan bulat dan b ? 0.
Contoh bilangan irasional adalah . Bilangan-bilangan tersebut, jika dihitung dengan kalkulator merupakan desimal yang tak berhenti atau bukan desimal yang berulang. Misalnya 

v2 = 1,414213562 .... Selanjutnya, gabungan anrara bilangan rasional dan irasional disebut bilangan real.

Bentuk Akar

Berdasarkan pembahasan sebelumnya, contoh bilangan irasional adalah v2 dan v5 . Bentuk seperti itu disebut bentuk akar. Dapatkah kalian menyebutkan contoh yang lain? 
Bentuk akar adalah akar dari suatu bilangan yang hasilnya bukan bilangan Rasional. 
Bentuk akar dapat disederhanakan menjadi perkalian dua buah akar pangkat bilangan dengan salah satu akar memenuhi definisi
va2 = a jika a = 0, dan �a jika a < 0 
Contoh :
Sederhanakan bentuk akar berikut v75
Jawab :
v75 = v25x3 = v25 x v3 = 5v3

Mengubah Bentuk Akar Menjadi Bilangan Berpangkat Pecahan dan Sebaliknya

Bentuk va dengan a bilangan bulat tidak negatif disebut bentuk akar kuadrat dengan syarat tidak ada bilangan yang hasil kuadratnya sama dengan a. oleh karena itu v2,v3, v5, v10, v15 dan v19 merupakan bentuk akar kuadrat. Untuk selanjutnya, bentuk akar nvamdapat ditulis am/n (dibaca: a pangkat m per n). Bentuk am/n disebut bentuk pangkat pecahan.

contoh :
Gambar:40.jpg 

jawab :

Gambar:41.jpg 

Operasi Aljabar pada Bentuk Akar


Penjumlahan dan Pengurangan

Penjumlahan dan pengurangan pada bentuk akar dapat dilakukan jika memiliki suku-suku yang sejenis.

Gambar:42.jpg 
kesimpulan :
jika a, c = Rasional dan b = 0, maka berlaku 

avb + cvb = (a + c)vb

avb - cvb = (a - c)vb

Perkalian dan Pembagian

Contoh :
Tentukan hasil operasi berikut :

Gambar:43.jpg 
jawab : 
Gambar:44.jpg 

Perpangkatan

Kalian tentu masih ingat bahwa (a^)" = a^'. Rumus tersebut juga berlaku pada operasi perpangkatan dari akar suatu bilangan.
Contoh:
Gambar:45.jpg 

Operasi Campuran

Dengan memanfaatkan sifat-sifat pada bilangan berpangkat, kalian akan lebih mudah menyelesaikan soal-soal operasi campuran pada bentuk akarnya. Sebelum melakukan operasi campuran, pahami urutan operasi hitung berikut.
  • Prioritas yang didahulukan pada operasi bilangan adalah bilangan-bilangan yang ada dalam tanda kurung.
  • Jika tidak ada tanda kurungnya maka
  1. pangkat dan akar sama kuat;
  2. kali dan bagi sama kuat;
  3. tambah dan kurang sama kuat, artinya mana yang lebih awal dikerjakan terlebih dahulu;
  4. kali dan bagi lebih kuat daripada tambah dan kurang, artinya kali dan bagi dikerjakan terlebih dahulu.
Contoh :

Gambar:46.jpg 

Merasionalkan Penyebut

Dalam perhitungan matematika, sering kita temukan pecahan dengan penyebut bentuk akar, misalnya Gambar:47.jpg 
Agar nilai pecahan tersebut lebih sederhana maka penyebutnya harus dirasionalkan terlebih dahulu. Artinya tidak ada bentuk akar pada penyebut suatu pecahan. Penyebut dari pecahan-pecahan yang akan dirasionalkan berturut-turut adalah Gambar:48.jpg 
Merasionalkan penyebut adalah mengubah pecahan dengan penyebut bilangan irasional menjadi pecahan dengan penyebut bilangan rasional.

Penyebut Berbentuk vb

Jika a dan b adalah bilangan rasional, serta vb adalah bentuk akar maka pecahan a/vbdapat dirasionalkan penyebutnya dengan cara mengalikan pecahan tersebut denganvb/vb .
Gambar:49.jpg 

Contoh :
Sederhanakan pecahan berikut dengan merasionalkan penyebutnya!

Gambar:50.jpg 
jawab :

Gambar:51.jpg 

Penyebut Berbentuk (a+vb) atau (a+vb)

Jika pecahan-pecahan mempunyai penyebut berbentuk (a+vb) atau (a+vb) maka pecahan tersebut dapat dirasionalkan dengan cara mengalikan pembilang dan penyebutnya dengan sekawannya. Sekawan dari (a+vb) adalah (a+vb) adalah dan sebaliknya.
Bukti
Gambar:52.jpg 
Contoh : 
Rasionalkan penyebut pecahan berikut. 
Gambar:53.jpg 
jawab : 
Gambar:54.jpg 

Penyebut Berbentuk (vb+vd) atau (vb+vd)

Pecahan tersebut dapat dirasionalkan dengan mengalikan pembilang dan penyebutnya dengan bentuk akar sekawannya, yaitu sebagai berikut.
Gambar:55.jpg 
Contoh: 
Selesaikan soal berikut! 
Gambar:56.jpg 
Jawab : 
gambar:57.jpg


Demikianlah Artikel Materi Bentuk Pangkat dan Akar Kelas 9 Lengkap, [ diktrus matematika ]

Sekianlah artikel Materi Bentuk Pangkat dan Akar Kelas 9 Lengkap, [ diktrus matematika ] kali ini, mudah-mudahan bisa memberi manfaat untuk anda semua. baiklah, sampai jumpa di postingan artikel lainnya.

Anda sekarang membaca artikel Materi Bentuk Pangkat dan Akar Kelas 9 Lengkap, [ diktrus matematika ] dengan alamat link http://diktrus.blogspot.com/2014/10/materi-bentuk-pangkat-dan-akar-kelas-9.html

0 Response to "Materi Bentuk Pangkat dan Akar Kelas 9 Lengkap, [ diktrus matematika ] "

Posting Komentar