Materi Kesebangunan SMP Kelas 9 Matematika, [ diktrus matematika ]

Materi Kesebangunan SMP Kelas 9 Matematika, [ diktrus matematika ] - Hallo sobat blogger Pendidikan, Posting yang saya unggah pada kali ini dengan judul Materi Kesebangunan SMP Kelas 9 Matematika, [ diktrus matematika ] , Artikel ini bertujuan untuk memudahkan kalian mencari apa yang kalian inginkan, kami telah mempersiapkan artikel ini dengan baik untuk kalian baca dan ambil informasi didalamnya. mudah-mudahan isi postingan Artikel Matematika, Artikel Modul Matematika, yang kami tulis ini dapat kalian pahami dengan baik, semoga artikel ini berguna untuk kalian, jika ada kesalahan penulisan yang dilakukan oleh penulis mohon dimaafkan karena penulis masih newbie. baiklah, selamat membaca.

Judul : Materi Kesebangunan SMP Kelas 9 Matematika, [ diktrus matematika ]
link : Materi Kesebangunan SMP Kelas 9 Matematika, [ diktrus matematika ]

Baca juga


Materi Kesebangunan SMP Kelas 9 Matematika, [ diktrus matematika ]

Kesebangunan adalah kesamaan perbandingan panjang sisi dan besar sudut antara dua buah bangun datar atau lebih. Pengertian kesebangunan seperti ini berlaku umum untuk setiap bangun datar. Dua bangun datar dikatakan sebangun jika memenuhi dua syarat berikut.
1) Panjang sisi-sisi yang bersesuaian dari kedua bangun itu memiliki perbandingan senilai.
2) Sudut-sudut yang bersesuaian dari kedua bangun itu sama besar.

Salah satu syarat kesebangunan adalah sudut-sudut yang bersesuaian sama besar. Maksud dari kata sama besar adalah ukuran sudutnya sebanding, Dua bangun yang kongruen pasti sebangun, tetapi dua bangun yang sebangun belum tentu kongruen. Bangun-bangun yang memiliki bentuk dan ukuran yang sama dikatakan bangun-bangun yang kongruen. Pengertian kekongruenan tersebut berlaku juga untuk setiap bangun datar.

Dua bangun datar dikatakan kongruen jika memenuhi dua syarat berikut:
  • Panjang sisi-sisi yang bersesuaian dari kedua bangun itu memiliki perbandingan senilai dan hasil perbandingannya selalu sama dengan satu.
  • Sudut-sudut yang bersesuaian dari kedua bangun itu sama besar.
Belah ketupat ABCD dicerminkan terhadap garis lurus l sehingga terbentuk bayangan belah ketupat A'B'C'D. AB = A'B', BC = B'C', CD = C'D, DA = DA' dengan D tetap. Belah ketupat ABCD dan A'B'C'D memiliki bentuk dan ukuran yang sama. Oleh sebab itu kedua bangun tersebut disebut kongruen atau sama dan sebangun. Ditulis ABCD = A'B'C'D.


Untuk mengetahui dua buah bangun datar sebangun dapat diselidiki perbandingan sisi-sisi yang bersesuaian dan besar sudut-sudut yang bersesuaian pada bangun-bangun datar tersebut. Jika perbandingan sisi-sisi yang bersesuaian sama dan besar sudut-sudut yang bersesuaian sama maka bangun-bangun tersebut dikatakan sebangun.


1. Perbandingan sisi-sisi yang bersesuaian: Sisi AB 
    bersesuaian dengan sisi EF dengan
AB



3,5=   1

EF
 72
2 . Sisi BC bersesuaian dengan sisi FG dengan 
BC



4=   1

FG
82
Sisi AC bersesuaian dengan sisi EG dengan  
AC



2=   1

EG
42
2. Besar sudut-sudut yang bersesuaian:
  • ?A bersesuaian dengan ?E dengan ?A = ?E =90�;
  • ?B bersesuaian dengan ?F dengan ?B = ?F = 60�; dan
  • ?C bersesuaian dengan ?G dengan ?C = ?G = 30�.
Oleh karena perbandingan sisi-sisi yang bersesuaian sama dan sudut-sudut yang bersesuaian sama besar maka segitiga P dan Q sebangun.

Jika dua bangun datar sebangun maka salah satu bangun datar merupakan pembesaran atau pengecilan bangun yang lain. Misal bangun I dan II sebangun. Maka bangun I merupakan pembesaran atau pengecilan bangun II. Dan sebaliknya, bangun II merupakan pembesaran atau pengecilan bangun I. Jika besar pembesaran bangun I setengah bangun II maka perbandingan sisi-sisi bersesuaian bangun I dan II adalah 1: 2 . 

Persegi panjang mempunyai dua pasang sisi yang sejajar. Dua sisi yang sejajar tersebut sama panjang. Oleh karena itu, sisi yang dibandingkan hanya dua. Dua sisi tersebut adalah sisi-sisi yang panjangnya berbeda. AD : EH dan AB : EF.


Dua segitiga dikatakan sebangun jika memenuhi salah satu syarat berikut :
  • Perbandingan panjang sisi-sisi yang bersesuaian senilai.
  • Dua pasang sudut yang bersesuaian yang sama besar.
Perhatikan contoh bangun di bawah ini :
Dari bangun-bangun di atas, bangun yang sebangun adalah : A dan J; B dan G, C dan M, D dan I; E dan L; 



Demikianlah Artikel Materi Kesebangunan SMP Kelas 9 Matematika, [ diktrus matematika ]

Sekianlah artikel Materi Kesebangunan SMP Kelas 9 Matematika, [ diktrus matematika ] kali ini, mudah-mudahan bisa memberi manfaat untuk anda semua. baiklah, sampai jumpa di postingan artikel lainnya.

Anda sekarang membaca artikel Materi Kesebangunan SMP Kelas 9 Matematika, [ diktrus matematika ] dengan alamat link https://diktrus.blogspot.com/2014/09/materi-kesebangunan-smp-kelas-9.html

0 Response to "Materi Kesebangunan SMP Kelas 9 Matematika, [ diktrus matematika ] "

Posting Komentar